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SUMMARY 

In this paper we consider high Reynolds number flows with closed strearnltness within which an inviscid re- 
gion of uniform vorticity is separated from the containing boundary by viscous boundary layers. From nu- 
merical solutions of the boundary-layer equations we are able to determine that value of the core vorticity 
for which inviscid core and boundary layer are compatible. 

1. Introduction 

Consider the steady, two-dimensional, laminar motion within a dosed region which is induced 

by a given velocity distribution along the external boundary whose shape and orientation remain 

fixed. The resulting motion will be one in which the streamlines are closed, and if the Reynolds 

number is large there will be an inviscid core, within which the vorticity is uniform, separated 

from the moving boundary by viscous boundary layers. A proof of this result is given by 

Batchelor [ 1 ]. This overall picture of the flow is confirmed by numerical solutions of the Navier- 

Stokes equations at high Reynolds number, as for example the flow in a square cavity discussed 

by Burggraf [2]. The core vorticity, which is related to the motion of the boundary, can only be 

determined from a consideration of the boundary layer which separates the core flow from the 

boundary. For the special case in whichthe boundary is circular the core vorticity is determined 

from a simple integral of the boundary-layer equations (see [1 ]). 

In this paper we consider, using numerical methods, the problem of determining the core vor- 

ticity for the general case in which the boundary is non-circular. We note that there will be one 

value of the core vorticity for which a steady solution of the boundary-layer equations is avail- 

able. Following a study of the nature of the outer part of the boundary-layer solution, we dem- 

onstrate the form that the steady solution of the boundary-layer equations takes close to the 

f ini te outer boundary, which it is necessary to adopt in a numerical scheme, for any value of the 

core vorticity. From these considerations we formulate a criterion, based upon matching the 

boundary-layer and core vorticities, which enables us to determine that value of the core vor- 

ticity which is consistent with a steady solution of the boundary-layer equations. The criterion 

is not dissimilar to that in [3]. We apply these ideas to a class of flows in elliptical regions, and 

we compare the results obtained with the result derived from assuming that the streamlines are 

circular. 
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16 N. Riley 

2. Flows with closed streamlines: the boundary layer 

As we have noted in Section 1, in a high-Reynolds number steady flow with closed streamlines 

the vorticity is uniform in a region where viscous forces are small, and the value, say COo, of the 
vorticity is determined from a consideration of the boundary layers surrounding the core. 

Consider a region S surrounded by a closed curve C which represents a solid boundary; all or 

part of the boundary is in steady motion, which typical speed Uo, and a fluid motion is induced 
within S. The shape and orientation of C remain unchanged. If d is a typical diameter of the re- 
gion, see Fig. 1, then we assume that the Reynolds number R = Uod/v is large, where v is the 

kinematic viscosity of the fluid. We choose Uo, d as a typical velocity and length respectively so 
that Uo/d is the scale of the core vorticity. With respect to the boundary-layer co-ordinates 

(x ,y)  of Fig. 1, for which the corresponding velocity components are (u, v) (where an appro- 
priate boundary-layer scaling with R y2 has been incorporated), the steady flow in the boundary 

layer is governed by the following equations and boundary conditions: 

au av 
+ -z-- = O, (2.1) a"~ 

oy 

~u bu dUl d2u 
u - - +  = U1 + - -  (2.2) aX V'-~y - - ~  ~)y2 ' 

u = U  s,  v = 0  at y = 0 ,  

u ~ U 1  a s y ~ o o ,  

u (x + 2l) = u(x). 

(2.3) 

In these equations the velocity at the edge of the boundary-layer Ul = U1 (x; 60o)is deter- 

mined from the inviscid core flow and depends upon the single parameter 600, Us = Us(x) is the 

prescribed 'skin velocity' of  the boundary and 21 is the length of the bounding curve C. 
In the especially simple case where the bounding curve C is a circle, so that the inviscid core 

is a solid-body rotation with circular streamlines, the pressure-gradient term in (2.2) is identi- 

cally zero and there is a simple relationship between U s and UI (see [1 ]), namely 

C 

f 

Figure 1. The geometry and co-ordinate system. 

Journal of Engineering Math., Vol. 15 (1981) 15-27 



Flows with closed streamlines 17 

21 21 
2 2 

0 0 

(2.4) 

from which, since U 1 = ½COo, we have 

2t d x  )'A (2 I COo = U s . 
o 

(2.5) 

The result (2.4) is determined by first introducing a new independent variable ~ into (2.2), 

where ~ is the stream function, and integrating around a closed streamline. This process yields 

a simple differential equation from which we have 

21 

f 
o 

u s d x  = const. (2.6) 

The argument which leads to (2.6) fails in the more general case due to the presence of  the pres- 

sure-gradient term in (2.2). 

It is instructive, for what follows, to consider in more detail the particularly simple case 

where the skin velocity on the circular boundary has only a small variation from a uniform 

value, so that to first order fluid and containing boundary are in rigid-body rotation. 

Thus we write 

U s = 1 + e l ( x )  + O(e2), 

U 1 = 1 + e ~  0 +0(65) ,  

(2.7) 

where f ( x )  is a prescribed periodic function with period 2l = 2rr, ~o o is a constant to be deter- 

mined, and e <<  1. Since f ( x )  is periodic, with period 27r, we may write 

1 
f ( x ) =  2 ao + n£- - =1 (a n cosnx +b n sinnx),  

where 

1 2n  1 2n 
a. = -  f ,"(x)cosnxdx, b. = -  f C(x)sinnxdx..=0, 1 2 . . . .  ( 2 . 8 )  

7"l" 11" ' 
o o 

We now write 

u =  1 + e u '  +O(e2) ,  (2.9) 

v = e ~  +O(e~) ,  

and from the linearized form of  (2.2) we determine the solution for ~" as 
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1 
u'= -~ (ao + ~0Y) + ~ e_nY/x/2 (anCOSnX+bnsinnx) cos __nY + 

n=l V~ 

+ ( n b n c o s n x + n - l a n s i n n x )  s i n ~ 2 } ,  

N. Riley 

(2.10) 

where the conditions at y = 0, and the periodicity condition have been satisfied but not, at this 
stage, the condition as y --> ~o. Consider, in general, conditions as y -~ oo. The vorticity in the 
core is an O(1) quantity whilst the vorticity inthe boundary layer is O(RV2). In order that the 
vorticity matches satisfactorily we require au/Oy --> 0 as y --> oo, and applying this condition to 
(2.10) gives ~2o = 0. Finally, applying the condition that u ~ 0% asy --> oo gives 

1 1 27r 
~o = ~ a o -  2 ,  f f ( x ) a x ,  (2.11) 

o 

which is in accord with the result (2.4). 

Now in a numerical solution of the boundary-layer equations, and we discuss such a solu- 

tion below, it will be necessary to prescribe c~ o and transfer the outer boundary condition to 
some remote, but finite, point y = yoo. We then see that a steady periodic solution of the form 
(2.10) is available provided that we choose 

I 

07 1 2~o - ao 

F ~'20 = -~Y Y=Yo~ yoo 
(2.12) 

Although ~20 chosen in this way in incorrect we may, by choosing yooto be sufficiently large 
in our numerical procedure, be unaware of this fact. 

Bearing the above considerations in mind we next address ourselves to the general problem 

in which the pressure gradient in (2.2) is non-zero. We examine conditions at the edge of the 
boundary layer by writing, asy -+ 0% 

U = U l  +'5, v = - y U ' ~  +v, 

where [~1, I~y I<< UI. 
(2.13) 

We suppose that COo, and hence U1, are known exactly and since U~ is periodic we have 

n Trx n Trx 
1 ~ (o~ n cos +/3 n sin ), v ,  = ~ so + - 7 -  ---/- 

n=l 

1 21 nTlx "1 21 nnx  
an = 7 f v, cos -7- dx, = 7 f v ,  sin----~ dx ,  n=O,  1 .... (2.14) 

o o 

Substituting (2.13) into (2.1), (2.2) gives the following linear equation for ~': 
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dUt a~d dU1 ~'d 
u -g ay 

which is simplified by writing ~ = ~'U1, 

a~ a2~ 

~x = U~ ~z2 . 

A separable solution 4) = X(x)Z (z) 
is given by 

Oy2 , 

z =y Ul to 

(2.15) 

(2.16) 

of  (2.16)which satisfies the condition ~'-+0 as y -+  oo 

X =  exp(iX 2 fU, dx), Z=A exp { -  (1 +i) z}, (2.17) 

where X 2 is the separation constant and A a constant of integration. The periodicity of ~b and 

hence u'is ensured if we choose 

12n  (2.18) 
X = X n = \ %1 

so that finally, as y ~ ~o, 

"if=U11 ~ Anexpt2nTri f InTr~lAY t n=l aol Uldx-(1 +i) \ -~o / ]  U 1 . (2.19) 

There are several features of  (2.19), which shows how a periodic boundary layer approaches 

the free-stream velocity, which are worthy of further comment. Firstly we note from the com- 

plex exponent that the free-stream velocity is not approached monotonically but through de- 

caying oscillations. Secondly we see that although the decay to the free-stream velocity is ex- 

ponential it is not as fast as the decay rate for non-periodic boundary layers which involve the 
exponential of  the square of  the distance from the boundary. Finally, from the factor U~ in the 

exponent, we infer that the penetration distance of the boundary layer increases as the free- 
stream speed decreases. All the above features have been observed in the numerical solutions 
which we describe below. 

The solution (2.19) matches satisfactorily in all respects with the inviscid core solution, as it 

should since we have assumed that Wo and hence U1 is correctly given. Suppose now that w0 is 

changed by a small amount, O(e), so that we require u ' +  e U1 asy + oo. There can now be no 

steady solution of our boundary-layer equations since the core vorticity is given incorrectly. 
We might then enquire about the form whmh u will take if we seek an approximate solution by 

numerical methods, when the condition as y ~ oo is replaced by one at y = yoo. As before we 
write u, v as in equation (2.1 3), and find that 7 satisfies (2.15) with the extra term 2 e U~ dUi/dx 
on the right-hand side. It is tempting to simply add eUz to (2.19), but this cannot be cor- 

rect since we would then have found the asymptotic form of a solution which matches with the 

inviscid core for another value of the core vorticity. There will be no such steady solution. How- 

ever if we apply the outer condition at y = yoo then we may anticipate, from the simple problem 
discussed above, that 

"~ = etU, + A ( x ) ( ~ ) +  B ( x ) ( ~  )~ + . . .t + ~ (exp), (2.20) 
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20 N. mley 

where ~" (exp) is as given in (2.19). If  we substitute (2.20) into the equation for u" we find that 

the periodic functions A (x), B (x) etc. are simply related with A (x) itself determined from 

the global boundary-layer calculation. The form of  solution (2.20) gives O'f f /Oy  = e A  ( x ) / y ~  

at y --- y ~ w h i c h ,  for fixed e, decreases as y ~  increases. 

The above considerations allow us to formulate a criterion which enables us to distinguish, 

from amongst the steady periodic boundary-layer solutions which we obtain numerically, that 

which matches satisfactorily with the inviscid core and so allows us to determine the core vor- 
ticity COo. In the next session we consider a particular example. 

3. An example 

We take the bounding curve C to be an ellipse with semi-major and -minor axes a and b respec- 

tively so that C is given by 

X 2 y2 
a2 + - ~ -  = 1. (3.1) 

We introduce elliptic co-ordinates (~, 7) related to the rectangular co-ordinates (X, Y) by 

X = 2e -n°  cosh 7 cos ~, Y = 2e -no sinh 7 sin ~, (3.2) 

where 7 = 70 is the ellipse C so that 

a = 2e -n°  cosh7o,  b = 2e -no s inh7o,  (3.3) 

and the eccentricity e of  the ellipse is given by 

e = { 1 - ( b / a )  2 } V2= sech no. (3.4) 

The scale factors associated with these co-ordinates are equal and are given by 

h (~, r~) = 2e -n°  (sinh 2 7 + sin 2 ~)Y2 . (3.5) 

In the inviscid core, where the vorticity 6o 0 is uniform, we solve Poisson's equation for the 

stream function ff which in these co-ordinates is 

= - 4 600 e-2n°  (sinh: 7 + sin2 ~), (3.6) 
0~2 + a7 2 

whose solution, with ~ = const on 7 = 770, is 

/ s  inh2 70 cosh27 cos: ~+ cosh 2 70 sinh2 7 sin2 ~ 
~= ~2 60o e - 2  (3.7 ) ! cosh 2 77o + sinh ~ 70 

From (3.7) we may calculate the velocity at the edge of  the boundary layer, U1, as 
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1 o~[ 
U 1  - h 87  n=no = w ° e - n °  tanh2r/0 (sinh2~o +sin 2 ~)'/2 

With 

(3.8) 

0 = ~, y = R  IA (% - r~)ho, (3.9) 

where h0 = h (~, % ) ,  the boundary-layer problem may be expressed as 

1 Ou Ov 
h~- O~ + ~ y  = O, (3.10) 

with 

U OU OU U 1 d U  1 02Ll 
h~- 0--0- + v - -  = + - -  (3.11) Oy h o dO 0y2 , 

u = U  s, v = O  at y = O ,  

u ~ U 1  as y ~ ,  (3.12) 

u(O + 27r) = u(O), 

where U1 = U1 (0, COo) is given by (3.8). For the skin velocity U s we have taken, in all our 

calculations, 

3 
U s = 1 + ~ cos0 .  (3.13) 

This choice is arbitrary; we have avoided the classical 'sleeve' velocity (see [1 ]) on account of  

the singularity which is introduced into the boundary-layer solution at points where U s is dis- 

continuous. 

The circle is, of  course, a special case corresponding formally to % ~ ~ .  In that case the 

exact result (2.5) is available, from which we deduce that 

COo = 2.26385. (3.14) 

In the next section we discuss the numerical solution of  the problem posed by equations 

(3.10) to (3.13). 

4. Numerical results 

The technique which we have employed to solve the equations (3.10) to (3.13) numerically is a 

fairly standard one and involves quasi-linearization of the first term on the left-hand side of  
(3.11), so that  we write 

0u _ 0u 0~ _ 0~ 
- -  u - -  + u - -  - u  ( 4 . 1 )  

u 00 ~ 00 00 00 ' 
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where, in the iterative solution at each station, an overbar denotes the value obtained from the 

previous iteration. In the iterative scheme we determine o from (3.10) by a simple quadrature 

and then using the Crank-Nicolson method, with derivatives replaced by central differences, we 

solve (3.11) for u and repeat the cycle until the difference between successive iterates falls 

below some prescribed tolerance. At that stage we advance to the next station. For a given value 

of  ~0 ,  and hence U1, we satisfy the periodicity condition in (3.12) by integrating over as many 

periods as is necessary for a periodic solution to emerge. For values of  ~o  which are different 

from the exact value a steady periodic solution is only available by virtue of  the fact that we 

work on the finite interval 0 ~< y ~< y ~  , as we have discussed in Section 3. The starting profile 

for each value o f  w0 is either taken from the solution for the previous value or from 

u = U s +(Ux - Us)(1 - e - Y ) .  (4.2) 

If  the value of  ~0 was not changed by a large amount the former choice, in general, gave more 

rapid overall convergence. In most of  the calculations described below we have taken step 

lengths 60 = 7r/30, ~y = 0.15. 

For our first example we have chosen the case o f  a circle, for which e = 0, by setting 7? o = 20 

in the governing equations. For different values o f y ~  and a range of  values o f  6% we have ob- 

tained solutions in the manner described above. Since our aim is, essentially, to determine the 

solution for which e = 0 in (2.20) we have used I au/Oy [y=y oo as a measure of  the closeness of  

our choice of  COo to the exact value. In Fig. 2 we show the integral o f  I au/Oy [y=y~o around C 

for different values o f y ~  and a range o f  values of  ~o .  For each of  the two cases shown we sug- 

gest that the minimum is close to the exact value o f  ~o o. That the integral is so relatively large 

at the minimum is accounted for by the fact that the values ofy~,  chosen are not sufficiently 

large for the exponential term in (2.19) to have decayed to zero. We have finally chosen y ~  = 18 

in all the calculations described. For the case o f  the circle we have repeated the calculations with 

75 

*o 
x 

50 
"-'e 

J 

Figure 2. 

y = = l O  

~ . ~ y  = 1 3  

0 i t t I 
2.22 2.24 2.26 2.28 2.3 

( " ' )  o 

The vorticity measure at the edge of the boundary layer for the case e = 0. 
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a mesh size 60 = n/15, 6y = 0.3 and from the two estimates of co 0 we have used h~-extrapola - 

t ion to determine a more accurate estimate of COo, namely 

w 0 = 2.26378, (4.3) 

which may be compared with the exact value in (3.14). We have carried out similar calculations 

for different values of y ~  in the case of an ellipse with a/b = x/2, or e = 0.71. The results, in 

which the same measure as before has been used, are shown in Fig. 3. Exactly the same trends 

as for the case e = 0 are observed, with the minimum for each curve giving an approximation to 

the appropriate value of COo. Again the value o f y ~  = 18 yielded accurate results for this case. 

15 

× 

I0 

0 
2.2 

Figure 3. 

y =10 

~ / / y  =12 

~ / y = 1 6  

1 i 

2.25 t~. 2.3 
I 

2.35 

The vorticity measure at the edge of the boundary layer for the case e = 0.71. 

0.5 

, d t l ,  

--0.5 

Figure 4. The pressure gradient acting in the boundary layer in the case e = 0.77. 
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In Figs 4 to 6 we show in more detail the results which we have obtained for e = 0.77 which, 

for the reasons discussed below, is the most eccentric of  the ellipses that we are able to treat in 

this way. For this ellipse we have calculated COo = 2.291 i,  and in Fig. 4 we show the pressure 

gradient which is the forcing term in (3.11), and we see that in this case the boundary layer de- 

velops under substantial variations of pressure. In Fig. 5 we show U s and U1, where for the lat- 

ter free-stream velocity we have also included the constant pressure result e = 0 for comparison. 
In the four parts of  Fig. 6 we show velocity profiles at various stations in the boundary layer, 

and we include also those appropriate to e = 0 for comparison. There is nothing exceptional 

about these profiles, but we do note that the velocity variations within the boundary layer in the 

case e = 0 simply reflect the variations in Us, since U1 is constant. For the case e = 0.77 the ve- 

locity distribution is not only affected by the variations of U s and U1 but also by the pressure 
gradient which acts across the whole of  the boundary layer, and the effect of  this can be seen in 

the profiles. We have noted in our calculations that for slightly larger values of e the pressure 

gradient has an increasing effect upon the boundary layer, to the extent that although U s and 

U~ are always positive the pressure gradient reduces the velocity to zero at a point Yi where 

0 ( Yi < Y** • When this first happens Ou/Oy = 0 also at y = Y i ,  and it is known from the work 
of Brown [4] that for boundary-layer flow under a prescribed pressure gradient a singularity de- 

velops whenever u and 3u/Oy vanish simultaneously at an interior point. We have noted the de- 

velopment of such a singularity in our solution, which has precluded the possibility of  us ex- 

tending our results to higher values of e. We believe that this singular point anticipates a region 

of reversed flow, as in the case of classical boundary-layer separation, and for that reason we 

suggest that the inviscid solution (3.7) may then no longer be appropriate. 
In Fig. 7 we summarize some of our results by displaying the values of co 0 which we have 

• ° ° 

1.0 

0.5  

1.5 

I I 

Figure 5. The skin velocity (3.13) - -  ; the free-stream velocity U i for the case e = 0 . . . .  

stream ve|ocity U~ for the case e = 0.77 . . . . . . .  . 

; the free- 
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0.8 1.0 u 

/ 
/ 

/ 
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(c) 
Figure 6. Velocity profiles at various stat ions on the  boundary  for the  case e = 0 - -  
(a) 0 =  7~r/15, (b) 0 =  14n /15 ,  (c) O= 21~r/15, (d) 0 = 28~r/15. 
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, and e = 0.77 . . . .  
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2.29 

2.27' 

2.25 
0 

Figure 7. 

/ 
/I 

//// 
I I 

0.4 e 0.8 

The core vorticity to o for various values of e. The exact result - - -  , equation (2.4) . . . .  . 

calculated for values of  e up to e = 0.77. These have been obtained by carrying out the calcula- 

tions described above on two mesh sizes and then using h 2.extrapolation. We also show in Fig. 7, 

for comparison, the values of  COo calculated by applying the result (2.4) to this case and note 

the reasonable agreement with the exact result. Burggraf [5 ], in his study of  the square cavity 

problem via numerical solutions of  the Navier-Stokes equations, has also noted that as the Rey- 

nolds number R increases the core vorticity becomes close to that which may be derived from 

the result (2.4). It seems not unreasonable therefore to conjecture that (2.4) will provide a 

sensible approximation to the core vorticity in most situations. It has been used in this way by, 

for example, Burggraf [5 ]. 

In conclusion we note that although the method which we have adopted enables us to de- 

termine the inviscid core vorticity accurately the calculations are quite lengthy. As a conse- 

quence it may be not significantly less economical to obtain numerical solutions from the Na- 

vier-Stokes equations at high Reynolds numbers as in [2], or the more recent work of  Lewis [6]. 

From such calculations not only can the inviscid core vorticity be evaluated by extrapolation, 

but finite Reynolds number effects within the flow-field can also be assessed. Furthermore, re- 
gions of  separated flow can be accommodated whereas the method of  solution described in this 

paper, based upon the boundary-layer equations, may fail due to the development of  singular 

behaviour. 

REFERENCES 

[11 G. K. Batchelor, On steady laminar flow with closed streamlines at large Reynolds number, J. Fluid 
Mech. 1 (1956) 177-190. 

12] O. R. Burggraf, Analytical and numerical studies of the structure of steady separated flows, J. Fluid 
Mech. 24 (1966) 113-151. 

Journal o f  Engineering Math., Vol. 15 (1981) 15-27 



Flows with closed streamlines 27 

[3] E.G. Smith, Closed streamlines in boundary layers, M.Sc. Dissertation, Bristol University (1973). 
[41 S.N. Brown, Singularities associated with separating boundary layers, Phil. Trans. R. Soc. A 257 (1965) 

409-444. 
[5] O. R. Burggraf, Computational study of supersonic flow over backward-facing steps at high Reynolds 

number,Aero. Res. Lab. Rept. 70-0275 (1970). 
[6] E. Lewis, Steady flow between a rotating circular cylinder and a fixed square cylinder, J. Fluid Mech. 

95 (1979) 497-513. 

Journal o f  Engineering Math., Vol. 15 (1981) 15-27 


